本篇文章给大家分享大数据分析个人面试提问,以及大数据分析个人面试提问问题对应的知识点,希望对各位有所帮助。
你自身的优点 这个问题不仅仅是在大数据面试当中常常被问,在各行各业的面试中都经常出现。所以面试者要尽可能说一些和工作相关的优点,比如“学习能力强”“能抗住压力”等,再举一个自己之前工作的例子进行证明,这会让面试官觉得很真实。
你自身最大的优点是什么 这个问题不限于大数据培训面试中,在各行各业的面试中经常出现。可是应聘者不清楚自己的优点是什么,甚至不少人喜欢说我最大的优点是没有缺点。如果面试官听到这样的回那么结果可能是被pass掉。
大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。大数据还使公司能够根据数据做出更好的业务决策。
最后,面试中还可能涉及集群管理和运维知识,数据倾斜问题以及Spark JVM内存调优等高级技术问题,这些都是大数据开发工程师需要掌握的技能。总的来说,面试大数据开发工程师时,问题会围绕上述技术领域展开,求职者需要具备扎实的理论知识和丰富的实践经验,以应对不同公司和面试官提出的多样化问题。
答案:完整性、准确性、一致性和及时性是数据质量的四大方面。完整性确保数据完整,准确性避免错误信息,一致性在大体系中保持数据统一,及时性确保数据价值。大数据场景篇 问题:找出1亿个整数中最大的10000个数 答案:全局排序内存不足,分治法和小顶堆是解决方案。
答案:使用coalesce()和repartition()方法降低并行度,新增并行度为1的任务合并小文件。Flink篇 问题:Flink实现流批一体 答案:Flink通过一个引擎支持DataSet和DataStream API,实现计算上的流批一体。Kafka篇 问题:Kafka实现精准一次性 答案:0.11版本后引入幂等性,确保重复数据只持久化一条。
大数据的本质与特性 大数据是处理海量、高速增长和多样性的数据,以提取价值和驱动业务决策的关键工具。其五大特征,Volume(数据量)、Velocity(速度)、Variety(多样性)、Veracity(准确性)和Value(价值),是理解其核心的关键。
您对大数据一词有什么了解? 大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。
下面给你整理了一部分应聘数据分析师会遇到的问题:你处理过的最大的数据量?你是如何处理他们的?处理的结果。
AA实验的差异可能由以下原因引起:实验惯性、打标上报异常、小概率事件、多重检验问题和极端用户。解决方案包括提升哈希分桶数量、进行样本均衡性检验、设置实验黑名单或按百分比截断用户。题目4:我该在什么时候用什么方式分析A/B测试结果呢?分析结果应在检验达到统计显著性后进行。
我把面试过程可以会问几类问题,不同的面试官可以侧重点不一样。我想和所有面试数据分析师的朋友说的:面试过程中大家是平等的。不要太弱势也不要太强势。把你之前的工作有条理的表达出来。面试一些问题的时候,可以想一想。我个人觉得,并不是所有的问题必须别人一问完,立即
关于大数据分析个人面试提问和大数据分析个人面试提问问题的介绍到此就结束了,感谢你花时间阅读本站内容,更多关于大数据分析个人面试提问问题、大数据分析个人面试提问的信息别忘了在本站搜索。