1、面试题四:如何在Hive中实现两张表的关联?对于关联操作,若其中一张表为小表,***用map端join加载小表进行聚合。
2、Hive支持存储格式包括TEXTFILE、SEQUENCEFILE、ORC与PARQUET。列式存储和行式存储各有特点,列式存储在查询少数字段时效率高,行式存储在查询整行数据时效率高。
3、**Join、Map与reduce数量、Jvm重用**:优化策略需关注Join操作的效率、Map与reduce的数量设置以及JVM的重用,通过合理配置减少计算资源的浪费。 **解决数据倾斜**:通过了解数据分布,可以***取措施减少数据倾斜带来的性能影响。
4、Hive的sort by和order by的区别在于,order by会进行全局排序,只有一个reduce任务,数据量大时处理速度慢;而sort by不进行全局排序,仅保证每个reduce任务内的数据有序,不能确保全局排序,需设置mapred.reduce.tasks大于1。希望这些关于Hive的面试题能帮助你更好地准备面试。
5、Hive是由Facebook开源用于解决海量结构化日志的数据统计工具;Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。Hive的本质是将HQL转化成MapReduce程序。数据仓库是为企业所有级别的决策制定过程,提供所有类型数据支持的战略***。
6、Hive常见面试问题解答 Hive的排序关键字主要包括全局排序和局部排序。全局排序(order by)是对整个数据进行排序,但只有一个reduce任务处理,处理大数据量时效率较低,仅限于升序。
1、优就业提醒大家,要尽可能说一些和工作相关的优点,比如“学习能力特别强”、“接受新事物的速度快”等,另外一定要举例子进行证明,让面试官觉得这个优点很真实。你为什么要学习大数据开发 其实这个问题只是面试官想要知道应聘者的态度而已。
2、简历 大家都知道面试一定要带简历,那么怎样才能制作出一份让面试官满意的简历呢。这里小编建议大家可以试试STAR法则,可以着重凸显出自己在数据分析项目中取得的成绩。另外简历一定要结合招聘要求来制作,与招聘要求的匹配度越高才更容易被hr发现,不要偷懒,用一份简历打天下。
3、首先,我觉得面试官有责任保证面试过程是一次高效的交流。你要获取到你需要的信息,对面试者做全方位的考量;面试者也要获取到他需要的信息,面试官(若面试成功很大可能是自己的上级)的水平,公司技术要求水平,自己是否适合这家公司,公司是否需要自己。
1、流处理与批处理在Flink中有明显区别:流处理处理无限、连续的数据流,低延迟,适用于实时分析,如消息和传感器数据;而批处理处理有限数据,适合离线分析和大规模数据仓库。Flink的流处理通过窗口机制(时间窗口、计数窗口、滑动窗口和会话窗口)处理数据,控制计算数据量以提高效率。
2、您对大数据一词有什么了解? 大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。
3、你自身的优点 这个问题不仅仅是在大数据面试当中常常被问,在各行各业的面试中都经常出现。所以面试者要尽可能说一些和工作相关的优点,比如“学习能力强”“能抗住压力”等,再举一个自己之前工作的例子进行证明,这会让面试官觉得很真实。
4、中大型公司(10 20人左右):组长1人,离线5 10人(离线处理、数仓),实时5人左右,JavaEE1人左右(负责对接JavaEE业务),前端1人(有或者没有人单独负责前端)。
5、首先,面试官通常会从求职者的基本情况开始了解,包括工作经历和项目经验。接下来,面试将深入技术层面。面试中,Java是基础,但通常不会深入,重点在于将Javase部分掌握牢固。在数据处理技术方面,Hadoop生态(包括Yarn、Zookeeper、HDFS)是必问内容,尤其是底层原理,因为这些是大数据处理的基础。
关于面试大数据处理,以及面试数据处理岗位的问题及答案的相关信息分享结束,感谢你的耐心阅读,希望对你有所帮助。
上一篇
大数据与现代通信技术专业就业方向
下一篇
大数据的发展为企业