当前位置:首页 > 大数据处理 > 正文

大数据处理的体系架构

本篇文章给大家分享大数据处理的体系架构,以及大数据处理技术体系对应的知识点,希望对各位有所帮助。

简述信息一览:

大数据的结构层级?

大数据平台架构分为三层:原始数据层、数据仓库、数据应用层。原始数据层,也称ODS层,用于存储基础日志数据、业务线上库和其他来源数据,数据仓库通过ETL处理ODS层数据产出主题表。数据仓库分为基础层、主题层和数据集市,ODS层特性侧重查询与变动性大,数据仓库为企业层级,数据集市则偏向解决特定业务问题。

数据分层处理 数据分层清晰结构、减少重复开发、统一数据口径、简化复杂问题。分层处理一般分为ODS、DW、APP等层次,方便数据查询与分析。数据应用 数据服务于企业,通过数据报表与数据策略实现业务还原、监控与指导。数据报表是数据人输出的主要形式,数据策略为直接解决问题的手段。

大数据处理的体系架构
(图片来源网络,侵删)

底层——存储层 现在互联网数据量达到PB级,传统的存储方式已无法满足高效的IO性能和成本要求,Hadoop的分布式数据存储和管理技术解决了这一难题。HDFS现已成为大数据磁盘存储的事实标准,其上层正在涌现越来越多的文件格式封装(如Parquent)以适应BI类数据分析、机器学习类应用等更多的应用场景。

大数据架构系列:如何理解湖仓一体?

1、业界趋向于湖仓一体,旨在结合数据湖的灵活性和数据仓库的高效性。这种架构通常将热数据(高查询频率)放在优化过的数据仓库中,冷数据则存放在数据湖以降低成本。通过远程访问和弹性计算,保证查询性能不受影响。

2、业界湖仓一体的出现,旨在简化架构,降低成本,提高效率。其基本模式是将热数据(频繁查询)存放在高效计算的仓库,冷数据存放在成本更低的数据湖中,通过数据仓库访问湖中的数据。如阿里云的MaxCompute+Hologres、华为云湖仓一体等都是实例。

大数据处理的体系架构
(图片来源网络,侵删)

3、湖仓一体技术的引入,不仅解决了数据冗余、时效性差、数据一致性问题和运维难度大等传统架构的问题,还为大数据分析提供了更加高效、灵活和统一的数据处理平台,为企业的数据分析工作提供了有力的支持。

4、实验架构改造。实验数据入湖,架构改造基于主流公有云,***用湖仓一体、存算分离架构,选用StarRocks作为OLAP引擎,满足数据合规和多租户接入。在腾讯云引入TBDS,海外公有云引入Databricks,提供数据入湖通道。湖上建仓,需要通用的OLAP引擎支持湖仓一体生态,同时具备本地存储+计算能力。

5、湖仓一体的核心优势在于简化交付流程,加速数据获取,降低大数据分析的复杂性和成本。它通过构建统一的数据管理平台,提升了数据科学家的创新空间,为数据驱动的决策提供了有力支持。

6、湖仓一体架构在机器学习覆盖各行各业的时代,可以从根本上简化企业数据基础架构并加速创新。Lakehouse 为用户提供了数据版本控制、治理、安全性和 ACID 属性,即使对于非结构化数据也是如此。Lakehouse 降低了成本,同时保留了简单、成本效益高和能服务于各种数据应用程序的核心属性。

大数据解决方案,在技术架构中都是如何分类的?

掌握大数据的处理和分析能力。就业前景:随着数字化时代的到来,大数据专业具有广泛的就业前景。大数据专业人才在各个行业中都有需求,包括金融、电子商务、医疗、能源、市场营销等。毕业生可以在数据分析师、数据工程师、大数据架构师、业务分析师等领域找到就业机会。

大数据和云计算的关系可以根据服务类型进行分类:IAAS在公共云中 IaaS是一种经济高效的解决方案,利用此云服务,大数据服务使人们能够访问无限的存储和计算能力。对于云提供商承担所有管理基础硬件费用的企业而言,这是一种非常经济高效的解决方案。私有云中的PAAS PaaS供应商将大数据技术纳入其提供的服务。

随着互联网时代的到来,人们愈发认识到现代科技与计算机技术的重要性,无论是互联网头部企业对IT技术的研发应用还是普通企业的发展需要都可以看出IT行业正处于如日中天的发展态势下,行业竞争同样十分激烈随着人工智能、物联网的发展、大数据人才急剧增加,所以大数据行业的就业前景一片光明。

网络安全产品等,它们共同构成了信息化产品的整体架构。随着科技的不断发展,信息化产品的种类和功能也在不断更新和扩展。总的来说,信息化产品是借助信息技术和设备实现信息获取、传输、处理和应用的一系列产品和解决方案。它们在各个行业和领域中都有广泛的应用,极大地推动了社会的进步和发展。

大数据平台架构

1、大数据平台架构分为三层:原始数据层、数据仓库、数据应用层。原始数据层,也称ODS层,用于存储基础日志数据、业务线上库和其他来源数据,数据仓库通过ETL处理ODS层数据产出主题表。数据仓库分为基础层、主题层和数据集市,ODS层特性侧重查询与变动性大,数据仓库为企业层级,数据集市则偏向解决特定业务问题。

2、大数据的架构主要包括分布式文件系统、NoSQL数据库、列式数据库、云计算平台等。分布式文件系统 大数据的存储和管理依赖于分布式文件系统。这类架构将文件分散存储在多个服务器上,利用多台服务器共同处理数据,实现数据的分布式存储和处理。这种架构可以有效地提高数据存储的可靠性和数据处理的速度。

3、在构建大数据平台时,需结合大数据生态圈中的组件及其功能特性来实现数据存储与计算。大数据平台的架构由五层组成:数据源层、数据***集层、大数据平台层、数据仓库层和应用层。数据源层提供各种业务数据,如用户订单、交易信息、系统日志等。

4、综上所述,大数据平台架构通过整合网站应用与大数据系统,提供统计分析、数据挖掘等功能,同时满足网站对毫秒级响应的需求。平台的关键部分包括数据***集、数据处理与数据输出与展示,以及任务调度管理系统,确保高效、灵活的数据处理与管理。

5、本文聚焦于大数据软件架构,具体介绍了Hadoop架构、Spark架构以及实时流处理框架的概念与应用。Hadoop架构作为分布式计算平台,其核心功能包括分布式并行编程模型MapReduce和Hadoop分布式文件系统HDFS。基于Java语言开发,***用Master/Slave架构模式。

6、美团的大数据平台架构实践详解 美团大数据平台的构建并非偶然,而是通过精心设计的架构实现的。谢语宸在一次大会上分享了构建该平台的方法与技术应用,为大数据领域的专业人士提供了宝贵的参考。

hadoop大数据处理架构的核心技术是什么?

1、Hadoop核心架构,分为四个模块:Hadoop通用:提供Hadoop模块所需要的Java类库和工具。Hadoop YARN:提供任务调度和集群资源管理功能。Hadoop HDFS:分布式文件系统,提供高吞吐量的应用程序数据访问方式。Hadoop MapReduce:大数据离线计算引擎,用于大规模数据集的并行处理。

2、大数据技术的体系庞大且复杂,基础的技术包含数据的***集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。

3、hadoop核心组件 用于解决两个核心问题:存储和计算 核心组件 :1)Hadoop Common:一组分布式文件系统和通用I/O的组件与接口(序列化、Java RPC 和持久化数据结构)。2)Hadoop Distributed FileSystem(Hadoop分布式文件系统HDFS) HDFS是存储数据的地方,就像我们电脑的硬盘一样文件都存储在这个上面。

大数据的存储架构有哪几种类型?

大数据框架主要有以下几种:Hadoop Hadoop是Apache软件基金***开发的一个开源大数据框架,它提供了一个分布式系统基础架构,允许开发者在集群上处理大规模数据。其核心组件包括分布式文件系统HDFS、MapReduce编程模型和HBase数据库等。Hadoop主要用于数据存储和处理,解决了大数据的存储和管理问题。

教育大数据六层架构是: 数据源层:包括传统的数据库,数据仓库,分布式数据库,NOSQL数据库,半结构化数据,无结构化数据,爬虫,日志系统等,是大数据平台的数据产生机构。

块存储技术 块存储是一种基于块的存储技术,它将数据划分为若干个块进行存储和管理。每个块都有唯一的地址,可以通过地址直接访问数据块。块存储技术适用于需要高性能数据存储的场景,如数据库和虚拟化环境等。云计算存储技术 云计算存储是大数据时代的一种重要存储解决方案。

实时大数据处理框架Lambda架构将大数据系统分为批处理层、实时处理层和服务层,实现高效的数据处理和分析。数据处理框架的选择需考虑数据处理形式和结果时效性。

关于大数据处理的体系架构和大数据处理技术体系的介绍到此就结束了,感谢你花时间阅读本站内容,更多关于大数据处理技术体系、大数据处理的体系架构的信息别忘了在本站搜索。

随机文章